Stereochemical Control of Enzymatic Carbon–Carbon Bond‐Forming Michael‐Type Additions by “Substrate Engineering”

نویسندگان

  • Yufeng Miao
  • Pieter G Tepper
  • Edzard M Geertsema
  • Gerrit J Poelarends
چکیده

The enzyme 4-oxalocrotonate tautomerase (4-OT) promiscuously catalyzes the Michael-type addition of acetaldehyde to β-nitrostyrene derivatives to yield chiral γ-nitroaldehydes, which are important precursors for pharmaceutically active γ-aminobutyric acids. In this study, we investigated the effect of different substituents at the aromatic ring of the Michael acceptor on the catalytic efficiency and stereoselectivity of the 4-OT-catalyzed acetaldehyde addition reactions. Highly enantioenriched (R)- and (S)-γ-nitroaldehydes and 4-substituted chroman-2-ol could be obtained in good to excellent yields by applying different substituents at appropriate positions of the aromatic substrate. Stereochemical control of these enzymatic Michael-type additions by "substrate engineering" allowed the enantioselective synthesis of valuable γ-aminobutyric acid precursors. In addition, the results suggest a novel enzymatic synthesis route towards precursors for chromans and derivatives, which are valuable scaffolds for preparing biologically active natural products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using mutability landscapes of a promiscuous tautomerase to guide the engineering of enantioselective Michaelases.

The Michael-type addition reaction is widely used in organic synthesis for carbon-carbon bond formation. However, biocatalytic methodologies for this type of reaction are scarce, which is related to the fact that enzymes naturally catalysing carbon-carbon bond-forming Michael-type additions are rare. A promising template to develop new biocatalysts for carbon-carbon bond formation is the enzyme...

متن کامل

Catalytic enantioselective direct Michael additions of ketones to alkylidene malonates

Enantioselective direct Michael additions of ketones using (S)-1-(2-pyrrolidinylmethyl)-pyrrolidine as a catalyst are described. Michael adducts with up to 91% e.e. were obtained by the reaction of alkylidene malonates with simple unactivated ketones under mild reaction conditions. © 2001 Elsevier Science Ltd. All rights reserved. An increasing demand for optically active compounds has stimulat...

متن کامل

Rational approaches for engineering novel functionalities in carbon-carbon bond forming enzymes

Enzymes that catalyze carbon-carbon bond formation can be exploited as biocatalyst for synthetic organic chemistry. However, natural enzymes frequently do not possess the required properties or specificities to catalyze industrially useful transformations. This mini-review describes recent work using knowledge-guided site-specific mutagenesis of key active site residues to alter substrate speci...

متن کامل

Influence of shielding gas composition on weld structure in pulsed Nd: YAG laser welding

This work studied the effect of additions of carbon dioxide to argon shielding gas on the weld shape and microstructure of ST14 steel in pulsed Nd: YAG laser welding. By additions of carbon dioxide up to 15%,the weld area and depth/width ratio decreases while rising of carbon dioxide up to 25% causes increasing of weld area and depth/width ratio. It is observed that the weld metal microstructur...

متن کامل

Substrate Control in Stereoselective Lanthionine Biosynthesis

Enzymes are typically highly stereoselective catalysts that enforce a reactive conformation on their native substrates. We report here a rare example in which the substrate controls the stereoselectivity of an enzyme-catalysed Michael-type addition during the biosynthesis of lanthipeptides. These natural products contain thioether crosslinks formed by a cysteine attack on dehydrated Ser and Thr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016